Provision of personalized feedback at scale using learning analytics

Centre for the Enhancement of Teaching and Learning
Faculty of Education
Hong Kong University
19/May/2017

Abelardo Pardo (@abelardopardo)
Faculty of Engineering and IT
slideshare.net/abelardo_pardo
New Design Mindset

The role of data and feedback

Personalised feedback at scale
New Design Mindset
Simple information transfer is not working

Learning Theories

- ACT-R (John Anderson)
- Adult Learning Theory (P. Cross)
- Algo-Heuristic Theory (L. Landa)
- Andragogy (Malcolm Knowles)
- Anchored Instruction (John Bransford)
- Aptitude-Treatment Interaction (L. Cronbach & R. Snow)
- Attribution Theory (B. Weiner)
- Cognitive Dissonance Theory (L. Festinger)
- Cognitive Flexibility Theory (R. Spiro)
- Cognitive Load Theory (J. Sweller)
- Component Display Theory (M. David Merrill)
- Conditions of Learning (Robert Gagne)
- Connectionism (Edward Thorndike)
- Constructivist Theory (Jerome Bruner)
- Contiguity Theory (Edwin Guthrie)
- Conversation Theory (Gordon Pask)
- Criterion Referenced Instruction (Robert Mager)
- Double Loop Learning (C. Argyris)
- Drive Reduction Theory (C. Hull)
- Dual Coding Theory (A. Paivio)
- Elaboration Theory (C. Reigeluth)
- Experiential Learning (C. Rogers)
- Functional Context Theory (Tom Sticht)
- Genetic Epistemology (J. Piaget)
- Gestalt Theory (M. Wertheimer)
- GOMS (Card, Moran & Newell)
- General Problem Solver (A. Newell & H. Simon)
- Information Pickup Theory (J.J. Gibson)
- Information Processing Theory (G.A. Miller)
- Lateral Thinking (E. DeBono)
- Levels of Processing (Craik & Lockhart)
- Mathematical Learning Theory (R.C. Atkinson)
- Mathematical Problem Solving (A. Schoenfeld)
- Minimalism (J. M. Carroll)
- Model Centered Instruction and Design Layering (Andrew Gibbons)
- Modes of Learning (D. Rumelhart & D. Norman)
- Multiple Intelligences (Howard Gardner)
- Operant Conditioning (B.F. Skinner)
- Originality (I. Maltzman)
- Phenomenonography (F. Marton & N. Entwistle)
- Repair Theory (K. VanLehn)
- Script Theory (Roger Schank)
- Sign Theory (E. Tolman)
- Situated Theory (J. Lave)
- Soar (A. Newell et al.)
- Social Development (L. Vygotsky)
- Social Learning Theory (A. Bandura)
- Stimulus Sampling Theory (W. Estes)
- Structural Learning Theory (J. Scandura)
- Structure of Intellect (J. Guilford)
- Subsumption Theory (D. Ausubel)
- Symbol Systems (G. Salomon)
- Triarchic Theory (R. Sternberg)
- Transformational Theory (J. Mezirow)
Active learning increases student performance in science, engineering, and mathematics

Scott Freemana,1, Sarah L. Eddya, Miles McDonougha, Michelle K. Smithb, Nnadozie Okoroafora, Hannah Jordta, and Mary Pat Wenderotha

aDepartment of Biology, University of Washington, Seattle, WA 98195; and bSchool of Biology and Ecology, University of Maine, Orono, ME 04469

Active Learning Works

Engage students in the learning process

“... robust correlations between student involvement in a subset of ‘educationally purposive activities’, and positive outcomes of student success and development, including satisfaction, persistence, academic achievement and social engagement”

We, as learners may

• Not know how to promote comprehension, retention, transfer.

• Not assess properly our own learning

• Be biased when judging our learning

• Rely too much on social beliefs

Frontier between physical and virtual spaces is blurring
Beware of technology creating the illusion of rational thinking
“... teaching in higher education will necessarily **shift the balance of its efforts towards a greater investment in design** as a way of coping with otherwise intolerable pressures on staff and resources.”

"There is no such thing as a neutral design"

“People make good choices in contexts in which they have experience, good information, and prompt feedback"

Variables associated with achievement

“38 meta-analyses investigating 105 correlates of achievement, based on 3,330 effect sizes from almost 2 million students”

• The effectivity of courses is strongly related to what teachers do.

• The effectivity of teaching methods depends on how are implemented.

• Teachers can improve the instructional quality of their courses by making a number of small changes:
 - providing detailed task-focused and improvement-oriented feedback

• The combination of teacher-cantered and student-cantered instructional elements is more effective than either form of instruction alone.

New Design Mindset

The role of data and feedback
Students are less likely to engage in pre-class activities if they are not interactive, **do not provide formative feedback**, and not coherently linked with the face-to-face activities.

If you could choose one...

- Over 800 meta-analyses of student achievements
- 100 factors with potential influence
- Feedback in top five
- (74 meta-analyses) Most effective form: video, audio, computer-assisted instructional feedback, and/or related goals

“Feedback is a **process** whereby learners obtain **information** about their work **in order to** appreciate the similarities and differences between the appropriate standards for any given work, and the qualities of the work itself, **in order to** generate improved work.”

Innovations designed to strengthen the **frequent feedback** that students receive about their learning yield **substantial learning gains**.
Perceived as an administrative chore instead of a pedagogical necessity

How to scale sustainable practices?

- Multi-stage assignments
- Dialogic feedback
- Technology supported
- Self-evaluation

Instructors are informed about student engagement but it is up to them to decide if/when/how to act.
Learning Analytics: measure, collect, analyse data about learners to understand and improve their learning and the environment in which it occurs.

• Collect data about how students engage in a learning experience

• Interpret the observations in the context of the instructional design

• Translate knowledge into **personalised** student support actions
New Design Mindset

The role of data and feedback

Personalised feedback at scale
Example of Highly Instrumentalized Learning Design
Week 8

Your lecture preparation

- **Watch the videos**
 - Your performance: 70%
 - Class average: 80%

- **Answer questions next to videos**
 - Your performance: 80%
 - Class average: 90%

- **Answer questions in notes**
 - Your performance: 60%
 - Class average: 70%

- **Score in the problem sequence**
 - Your performance: 80%
 - Class average: 90%

See dashboard? Yes Ok
No statistically significant difference in the rating of feedback (2013 edition, $M=3.25$, $SD=0.97$; 2014 edition, $M=3.35$, $SD=1.03$); $t(389.78) = -0.97$, $p < 0.17$
Q1: You should take a more careful look at how symbols are encoded in the video. Would you be able to encode/decode UAL symbols without looking at the video?

Q2: Good initial work. However, did you understand the trick to handle encoding with a variable number of bits? Would you be able to provide an example?

Q3: Good work. Would you be able to come up with your own machine language and your encoding scheme? Remember that it has to be unambiguous.

Q4: Thorough work with the task about machine language encoding. Give it a quick review before the midterm.
Hi {name}

Here are some comments about the tasks this week:

Regards
Hi,

Here are some comments and feedback about your lecture preparation in ELEC1601 during Week 2.

Activity VIDEO: Encoding in base 2, 8 and 16

- Make sure you review again the whole content explained *in the video of the activity*. You could use a piece of paper and try to replicate the developments that are explained in the video.
- Give another round to the questions next to the video in this activity until you answer all of them correctly at the first attempt and without looking at the solutions.

VIDEO: Review of natural and integer number encoding

- Make sure you review again the whole content explained *in the video in the activity*. Encoding naturals is a procedure that you will be using very frequently in the following weeks.

VIDEO: Encoding Integers

- Review again the 2s complement encoding explained in *the video in the activity*. Repeat the procedure until you are able to do it very fast.
- You should give it another try to the questions next to the video in this activity. Try to work in the encoding until you have no incorrect answers in a full round.

Read about the floating point representation

- Good work with *the questions in the section*. You may take some of them and create variations (change number of bits for example) to make sure you fully understand the concepts.
- You should give it another try to *the questions about range, accuracy and precision in section 2.7.2*.
- Good work with *the questions in section 2.7.3*.

Sequence of problems about information encoding

- Good work with *the exercises in the sequence*. You may want to review it in a few days, or perhaps before the midterm.

Regards
Helpful feedback

Effect size (Cohen’s d) = 0.49. Medium positive effect

Midterm Scores

Effect size (Cohen’s d) = 0.21. Small positive effect

Support instructors to create personalised feedback

Simple rule-base knowledge encoding

Provide appropriate view of data sources

Scale to large and highly diverse cohorts

Will be released as open-source project Q3/4 2017

First pilots in Q1/2 2017

Tutorial in LAK 2017

Contact us if interested

ontasklearning.org
Conclusions

• New L&T design mindset required
• Feedback is effective to promote student engagement
• Learning analytics has the potential to support students at scale
• Use data to provide personalised student support
Abelardo Pardo
Provision of Personalised Feedback at Scale Using Learning Analytics
Provision of personalized feedback at scale using learning analytics

Centre for the Enhancement of Teaching and Learning
Faculty of Education
Hong Kong University
19/May/2017

Abelardo Pardo (@abelardopardo)
Faculty of Engineering and IT
slideshare.net/abelardo_pardo